
NASA/WVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

NASA-IVV-97-003
WVU-IVV-97-003

WVU-CS-TR-97-006

An Improved Suite of Object Oriented Software Measures

By Ralph D. Neal, Roland Weistroffer, and Richard J. Coppins

National Aeronautics and Space Administration

West Virginia University

NASA-IVV-97-003

NASA IV&V Facility, Fairmont, West Virginia

An Improved Suite of Object Oriented Software Measures

Ralph D. Neal, H. Roland Weistroffer, and Richard J. Coppins

June 27, 1997

This technical report is a product of the National Aeronautics and Space Administration

(NASA) Software Program, an agency wide program to promote continual improvement

of software engineering within NASA. The goals and strategies of this program are

documented in the NASA software strategic plan, July 13, 1995.

Additional information is available from the NASA Software IV&V Facility on the
World Wide Web site http://www.ivv.nasa.gov/

This research was funded under cooperative Agreement #NCC 2-979 at the NASA/WVU

Software Research Laboratory.

An Improved Suite of Object Oriented Software Measures

Ralph D. Neal

West Virginia University

H. Roland Weistroffer

Virginia Commonwealth University

School of Business, Richmond, VA 23284-4000

Richard J. Coppins

Virginia Commonwealth University

School of Business, Richmond, VA 23284-4000

Abstract

In the pursuit of ever increasing productivity, the need to be able to measure specific aspects of

software is generally agreed upon. As object oriented programming languages are becoming

more and more widely used, metrics specifically designed for object oriented software are

required. In recent years there has been an explosion of new, object oriented software metrics

proposed in the literature. Unfortunately, many or most of these proposed metrics have not been

validated to measure what they claim to measure. In fact, an analysis of many of these metrics

shows that they do not satisfy basic properties of measurement theory, and thus their application

has to be suspect. In this paper ten improved metrics are proposed and are validated using
measurement theory.

Introduction

In the early days of computer applications, software development was best described as art, rather

than science. The absence of design guidelines often resulted in spaghetti code that was

unintelligible to those charged with maintaining the software. In the pursuit of greater

productivity, software development eventually became more structured and evolved into the field

of software engineering. Part of the engineering concept is that the characteristics of the product

must be controllable, and DeMarco [4] reminds us that what is to be controlled must be
measured.

Measurement is the process whereby numbers or symbols are assigned to dimensions of entities

in such a manner as to describe the dimension in a meaningful way. For example, inches or

centimeters are meaningful in measuring the dimension height of the entity person. They are not

meaningful however, to measure the age of a person. A requirement of meaningful measurement

is that intuitive and empirical assessments of the entities and dimensions are preserved. For

Object Oriented Measures - 1

example, when measuring the height of two people, the taller person should be assigned the

larger value. A further requirement for meaningfulness is some model that defines how

measurements are to be taken. For example, should posture be taken into consideration when

measuring human height? Should shoes be allowed? Should the height be measured to the top of

the head or the top of the hair? The model is necessary because a reasonable consensus by the

measurers is needed [6].

Software development continues to evolve. In recent years, object oriented programming

languages have become widely accepted, and to some extend the concepts of structured

programming are being replaced or augmented by object oriented concepts. Object oriented

software is organized as a collection of objects, where objects are entities that combine both data

structure and behavior. By contrast, data structures and behavior are only loosely connected in

traditional, structured programming (see for example [13]). Though there is no general

agreement among authors on all the characteristics and on the exact terminology that define the

object oriented paradigm, object oriented models can be summarized by the three properties of

encapsulation, abstraction, and polymorphism [7]. Encapsulation, sometimes also called

information hiding, refers to the concept of combining data and functions into objects, thus

hiding the specifics from the user, who is given a more conceptual view of the objects,

independent of implementation details. Abstraction refers to the grouping of objects with similar

properties into classes. Common properties are described at the class level. A class may possess

subclasses that describe further properties. Multiple levels of subclasses are allowed.

Polymorphism is the ability of an object to interpret a message according to the properties of its

class. The same message may result in different actions, depending on the class or subclass that

contains the object. Subclasses inherit all the properties of their super classes, but may have

additional properties not defined in the super class.

Because object oriented software has distinctly different characteristics from traditional,

structured programs, different metrics are needed for object oriented software. Few such metrics

were available until just a few years ago, but recently there has been an avalanche of newly

proposed metrics [3] [9] [10]. Unfortunately, few of these metrics have been validated beyond

some regression analysis of observed behavior.

Validation of a software metric is showing that the metric is a proper numerical characterization

of the claimed dimension [1] [5]. Zuse [16] did an extensive validation and classification of

conventional software metrics, using measurement theory. Neal [11] did a similar study for

object oriented metrics and found that many of the proposed metrics cannot be considered valid

measures of the dimension they claim to measure. The current paper proposes a suite of ten new

metrics which have been validated using measurement theory, and which may replace some of

those earlier published metrics that were not found to be valid measures.

The rest of this paper is organized as follows: In the next section, a model based on

measurement theory and modified from Zuse's model [16] [17] [19] is described, for validating

object oriented software metrics. Following that, ten new metrics are introduced and classified,

based on this model.

The Validation Model

ObjectOdenledMeasures- 2

There are two fundamental considerations in measurement theory: representation and

uniqueness. The representation problem is to find sufficient conditions for the existence of a

mapping from an observed system to a given mathematical system. The sufficient conditions,

referred to as representation axioms, specify conditions under which measurement can be

performed. The measurement is then stated as a representation theorem. Uniqueness theorems

define the properties and valid processes of different measurement systems and tell us what type

of scale results from the measurement system. The scale used dictates the meaningfulness of

measures or metrics [8] [12] [14].

To explain the representation problem, suppose we observe that Tom is the tallest of a group of

three people, Dick is the shortest of the three, and Harry is taller than Dick and shorter than Tom.

A taller than relationship among the three people has been empirically established [5]. Any

measurement taken of the height of these three people must result in numbers or symbols that

preserve this relationship. If it is further observed that Tom is much taller than Dick, then this

relationship must also be preserved by any measurement taken. That is, the numbers or symbols

used to represent the heights of Tom and Dick must convey to the observer the fact that Tom is
indeed much taller than Dick. If it is further observed that Dick towers over Tom when seated on

Harry's shoulders, then another relationship has been established which must also be preserved

by any measurement taken. This relationship might be represented in the real number system by

.7 Dick + .8 Harry > Tom. Any numbers that resulted from measuring the height of Tom, Dick,

and Harry would have to satisfy the observation represented by our formula.

To illustrate the uniqueness problem, let us consider two statements: 1) This rock weighs twice

as much as that rock; 2) This rock is twice as hot as that rock. The first statement seems to make

sense but the second statement does not. The ratio of weights is the same regardless of the unit

of measurement while the ratio of temperature depends on the unit of measurement. Weight is a

ratio scale, therefore, regardless of whether the weights of the rocks are measured in grams or

ounces the ratio of the two is a constant. Fahrenheit and Celsius temperatures are interval scales,

i.e., they exhibit uniform distance between integer points but have no natural origin. Because

Fahrenheit and Celsius are interval scales, the ratio of the temperatures of the rocks measured on

the Fahrenheit scale is different from the ratio when the temperatures are measured on the

Celsius scale. Statements, such as those above, are meaningful only if they are unique, i.e. if

their truth is maintained even when the scale involved is replaced by another admissible scale.

Metrics may be valid with respect to ordinal scales only, or they may be valid with respect to

interval or ratio scales. The ordinal scale allows comparisons of the type "entity A is greater than

entity B" or "entity A is at least as great as entity B." Rank order statistics and non-parametric

statistics may be used with entities measured on an ordinal scale. The median is the most

meaningful measure of centrality on an ordinal scale.

The interval scale allows the differences between measurements to be meaningful. Statements

such as "the difference between A and B is greater than the difference between B and C" can be

made about entities measured on an interval scale. When groups of entities are measured on the

interval scale, parametric statistics as well as all statistics that apply to ordinal scales can be used,

provided that the necessary probability distribution assumptions are being met. The arithmetic

mean is the most powerful and meaningful measure of centrality.

Object Oriented Measures - 3

Use of the ratio scale implies that the ratios of measurements are meaningful, as for example in

measuring the density or volume of something. Statements such as "A is twice as complex as B"

can be made about entities measured on the ratio scale. When groups of entities are measured

on the ratio scale, percentage calculations as well as all statistics that apply to the interval scale

can be used. The arithmetic mean is the most powerful and meaningful measure of centrality.

In order for a metric to be valid on an ordinal scale, it must be representative of the dimension

under consideration (e.g. complexity or size) and it must satisfy the axioms of the weak order, i.e.

completeness, transitivity, and reflexivity. In order for a metric to be valid on an interval or ratio

scale, it must be valid on an ordinal scale and satisfy additional axioms. There are certain

desirable properties that contribute toward the degree that a metric may be considered

representative [15]. For example, a metric should satisfy intuition, i.e. it should make sense

based upon the professional experience of the measurer. Entities that appear better in the

dimension being measured (based on the observer's experience) should score higher on the

metric being used. Entities that appear similar should score roughly the same. Consistency is

another important feature. The measurement must be such that very nearly the same score is

achieved regardless of the measurer, and the order in which the entities appear, in relation to each

other, must be consistent from measurement to measurement. Further, in order for the metric to

be useful, there must be sufficient variation in the measurement of different entities.

Zuse [16] [17] evaluated metrics of software code using flowgraphs to describe the possible

structures being measured. Zuse defined modifications to the flowgraphs to describe the

properties of the metric. The value of each metric increased, decreased, or stayed the same for
each modification. The relation between the value of the metric taken before the modification to

the flowgraph and the value of the same metric taken after the modification to the flowgraph is

the partial property of the modification for this metric. Before a metric can be considered valid

with respect to a specific scale, sufficient atomic modifications must be defined to describe the

changes that can affect the metric, the partial properties of the metric must be established, and

these partial properties must satisfy common intuition. An atomic modification is defined as the

smallest change that can be made to an entity being measured, which will change the result of the

measurement. There may be multiple possible atomic modifications for a metric.

Determining what the relevant atomic modifications are for each metric is itself a task based on

intuition. Validation here is not a mathematical proof, but rather comparable to validation of

scientific theories. Once sufficient evidence is found to support a theory, and as long as no

contrary evidence is found, a theory is accepted as valid. The possibility of later refutal is always

a reality.

If no atomic modification is found to contradict the premise of the measure, the measure may be

accepted as valid on the ordinal scale. In order to be accepted valid on the ratio scale, the

measure must preserve size relationships under concatenation of entities, i.e. the concatenated

entities must have a measure equal to the sum (or the union, depending on the type of entities) of

the measures of the original entities [18].

Newly Proposed Object-Oriented Software Metrics

1. Potential Methods Inherited (PMI)

Object Oriented Measures - 4

PMI is defined as the maximum count of methods that could potentially be invoked by a class.

PMI is offered as an improvement to the Depth of the Inheritance Tree (DIT) metric of

Chidamber and Kemerer [3], and the Number of Methods Inherited by a Subclass (NMI) metric

of Lorenz and Kidd [10]. Both are proposed as measures of complexity. DIT is defined as zero

for a class that has no super class, i.e. the root node of the inheritance tree, one for each of the

root node's immediate subclasses, two for the subclasses of these subclasses, etc. NMI is defined

as the number of methods inherited by a class, i.e. the count of methods in all super classes. PMI

differs from NMI in that PMI also counts the methods that are defined in the class itself, i.e. are

not inherited.

As an example, assume in Figure 1 below that class A has five methods, class B has four

methods, and class C has six methods. The NMI for classes B and C would be 5, the PMI for

class B would be 9, and the PMI for class C would be 11. NMI for the combined class B+C in

Figure 2 would still be 5. The PMI for the combined class B+C would be 15.

To see problems with the validity of the DIT metric, consider the case where a class with

subclasses is combined with a sibling class (Figures 1 and 2 below). No change in DIT takes

place indicating equal complexity, even though the number of methods inherited has increased.

Alternatively, consider the case where a class is combined with its super class, thereby reducing

the DIT for all of its subclasses (Figures 3 and 4 below). The new DIT would indicate that

complexity has been reduced, even though no change in the number of methods has taken place.

To see problems with the validity of the NMI metric, consider the case where two sibling classes

are combined (Figures 1 and 2 below). The NMI for the new, combined class is the same as the

NMI was for the sibling classes before the combination, indicating equal complexity, even

though the new class may contain many more methods. This problem does not occur with the

proposed PMI metric, as it counts the local methods as well.

Figure 1 Figure 2

Object Odented Measures - 5

Figure 3 Figure 4

To further validate PMI as a measure of complexity, consider Figure 1 and the atomic

modification of adding or deleting a class at some lower level of the inheritance tree. If for

example, a new class is added as a subclass of D, E, F, or G, it is clear that the PMI of the added

class is higher than that of the parent class. This supports our intuitive assumption that

complexity increases (decreases) as methods are added to (deleted from) an existing inheritance

tree or hierarchy chart. Irrespective of where the new class is added (deleted), the PMI of the

classes effected, i.e. those classes that are at some lower level of the path on which the added or

deleted class lies, will increase (decrease).

Consider the atomic modification of combining two classes that are not children and not siblings

of each other, e.g. combine B and G in Figure 1, to get Figure 5. The PMI for class F remains

unchanged. The PMI of classes D, and E increases, as does the PMI of the combined class.

Figure 5

Figure 6

Object Oriented Measures - 6

Finally, consider the atomic modification of combining a parent with its child class, as shown for

example in Figures 3 and 4. The PMI of class F remains unchanged. The PMI of classes C and D

increases.

As stated earlier, a measure can be used as an ordinal scale if the partial properties of the atomic

modifications defined for that measure are acceptable and the axioms of the weak order hold.

Thus, if the above examples pass the test of common sense and intuition, PMI can be accepted on

the ordinal scale as a complexity measure of classes.

In order to validate PMI on the ratio scale, we need to show that PMI is additive under the

concatenation patterns of object-oriented classes. Consider Figure 1 as a structure to which we

wish to add Figure 6. Assume XYZ is inserted between A, B and C such that X is a subclass of

A, B is a subclass of Y, and C is a subclass of Z. Let -old signify measurements taken before the

merge, and let -new signify measurements taken after the merge. Since all methods in all classes

along the path to the root node are counted, it is always the case that

PMID-new = PMID-old + PMIv-old

PMIE-new = PMIE-old + PMIv-old

PMIF-new = PMIv-old + PMIz-old

and PMIc;-new = PMIo-old + PMIz-old.

In general, whenever concatenation takes place, the PMI of classes affected will increase by the

number of methods in the classes that are being inserted within the path to the root node. Thus

the PMI metric meets the measurement theory properties of the ratio scale.

Metrics should be easy to calculate, easy to capture, and be cost effective [2] [10] [17]. Actual

methods inherited, as opposed to potential methods inherited, would be a more powerful measure

of inheritance. However, calculating actual inheritance may not be possible in the early stages of

program development, and when possible, would likely be extremely costly. PMI captures more

information than D1T and NMI, meets the criteria of the ratio scale, and can be calculated at

reasonable expense.

2. Proportion of Methods Inherited by a Subclass (PMIS)

PMIS is offered as an improvement to the NMI metric of Lorenz and Kidd [10]. PMIS is a

measure of the strength of subclassing by inheritance. PMIS ranges along the closed interval

[0,1], and is calculated by dividing the NMI of the subclass by PMI of the subclass, i.e. the total

number of methods in the path including the subclass (see previous section). Thus,

PMIS = NMI/PMI.

The partial properties of the metric are described by the atomic modifications of adding

(subtracting) a method to the subclass being measured, and adding (subtracting) a method to a

class along the path to the subclass being measured. As methods are added to (removed from) the

subclass being measured, PMIS increases (decreases). As methods are added to (removed from)

a super class of the subclass being measured, PMIS decreases (increases). If we accept that

PMIS measures subclassing by specialization, then we can accept PMIS as an ordinal scale.

Object Oriented Measures - 7

The measure PMIS can be parsed into two separate components. The dividend is the number of

methods inherited by the subclass, and the divisor is the total number of methods available to the

subclass. Both the dividend and the divisor are counts, which put them on the absolute scale.

PMIS is the proportion of methods available to a subclass which are available through

inheritance. Proportions are ratio scales [12]. Therefore, if we accept PMIS as a measure of

specialization, PMIS can be accepted as a ratio scale.

3. Density of Methodological Cohesiveness (DMC)

DMC is proposed as an alternative to the Lack of Cohesion in Methods (LCOM) metric of

Chidamber and Kemerer [3]. LCOM is calculated by looking at all possible pairs of methods

within a class, and by counting those pairs with some common instance variables, and those pairs

having zero common instance variables. LCOM is defined as the number of pairs with zero

common instance variables, minus the number of pairs with some common instance variables, as

long as this difference is non-negative, otherwise LCOM is taken to be zero. One problem with

the LCOM metric is that a value of zero can mean anything between equal numbers of pairs with

and without common instance variables, to all pairs having some common instance variables.

The metric does not discriminate in these cases, and thus may be of little value.

DMC is defined as the number of pairs of methods that have some common instance variables

within an object class, divided by the total number of pairs of methods in the class. DMC ranges

along a continuum in the closed interval [0,1]. If S = the count of pairs of methods with some

similarities, and if N = the total number of methods, then the total number of pairs of methods

= (N*fN-1))/2, and DMC = S / ((N*(N-1))/2) = 2S/(N*(N-1)).

In order to describe the partial properties of DMC we apply the atomic modification of adding or

deleting a method to the measured class. If the added method uses instance variables already

being used in the class, DMC will increase in proportion to the number of methods already using

the instance variables. If added methods use instance variables unique in the class, DMC will

decrease in proportion to the number of methods added. This seems congruent to most users'

understanding of inter-relatedness and thus their understanding of cohesiveness of methods. A

measure can be used as an ordinal scale if the user accepts the partial properties of the atomic

modifications defined for that measure and the axioms of the weak order hold. The axioms of

the weak order hold and DMC can be accepted as an ordinal scale.

The measure DMC is the proportion of two counts, and proportions are ratio scales [12].

Therefore, if we can accept that the ratio of pairs of methods which have some common instance
variables defines a measure of cohesiveness of methods within a class, DMC may be assigned to

the ratio scale. Counting common instance variables within the method pairs would likely be an

even better metric, but it would be harder and more costly to determine.

Objecl Oriented Measures - 8

4. Messages and Arguments (MAA)

MAA undertakes to quantify the communication complexity of a method and is offered as an

improvement to the Number of Message-sends (NMS) metric of Lorenz and Kidd [10]. Some

messages require no arguments. These messages nevertheless add complexity to the method and

must be accounted for in any metric which proposes to measure method complexity. Each

argument required by a message adds additional complexity to the method and must likewise be

accounted for in any metric which proposes to measure method complexity. MAA is a count of

the number of message-sends in a method plus a count of the number of arguments in the

messages. MAA ranges from 0 to N where N is a positive integer.

Let Iml be the number of message-sends in a method, and let lail be the number of arguments in

the i th message-send. Then

MAA = Zilail + Iml.

The metric is designed to measure a method. Methods are designed to fulfill certain purposes

and certain functions must be called in order to meet this design. These message-sends are not

likely to be moved from one method to another. The partial property of interest is the addition

(deletion) of message-sends or function calls to a method. As function calls are added (deleted),

the value of MAA increases (decreases). The user would agree that a method grows more (less)

complex as function calls are added to (deleted from) the method. The user would also agree that

function calls with arguments add more complexity than function calls without arguments and

that the more arguments a function call has, the more complexity it adds. If that is the case,

MAA can be assigned to the ordinal scale.

The formation of a class is accomplished through the concatenation of methods. Concatenation

can be either sequential or alternative. The alternative form of concatenation would involve the
inclusion of an "IF" statement in the class to determine whether a method would be instantiated

at run time. The sequential form is used whenever all methods are to be instantiated without

exception. Let {M} be the set of methods concatenated to form a class and let Mi be the i th

method. Further, let MAAi be the MAA of method Mi and let MAAM be the MAA of the set

{M}. Since there are no message-sends included in the "IF" statements added in the alternate

form of concatenation and because message-sends are not merged in the sequential form of

concatenation, then, MAAM = EiMAAi. This being the case, it follows that if MAA is a valid

measure of method complexity on an ordinal scale, then MAA is valid on a ratio scale.

5. Density of Abstract Classes (DAC)

DAC is offered as a complement to the Number of Abstract Classes (NAC) metric of Lorenz and

Kidd [1]. Abstract classes facilitate the reuse of methods and state data. Methods in abstract

classes are not instantiated but rather are passed on to subclasses through inheritance. DAC is

proposed as a measure of reuse through inheritance. DAC is the proportion of abstract classes in

a project and ranges along the closed interval [0,1].

Consider the hierarchy chart in Figure 1, where the nodes represent classes and subclasses, and

the arcs represent inheritance. Assume that the main purpose of class C is to define a common

Object Oriented Measures - 9

interface for classes F and G. Then class C cannot be instantiated and is known as an abstract

class. Assuming that class C is the only abstract class in this program, then the DAC of this
program is 1/7.

Since DAC is calculated solely from the classes within a program or project, the partial

properties of the metric are described by (1) adding or subtracting an abstract class to the

program or project, and by (2) adding or subtracting a class that is not an abstract class to the

program or project. As abstract classes are added (subtracted), DAC increases (decreases). As

classes that are not abstract classes are added (subtracted), DAC decreases (increases). If we

accept the density of abstract classes as a measure of reusability through inheritance then DAC is
a valid measure on an ordinal scale.

The measure DAC is a quotient where the dividend is the count of abstract classes and the

divisor is the count of all classes. As counts, both the dividend and the divisor are absolute

scales, and proportions of absolute scales are ratio scales [12]. Therefore, if we can accept that

the count of abstract classes defines a measure of reuse through inheritance, DAC may be
assigned to the ratio scale.

The advantage of DAC over NAC is that DAC allows us to compare programs of different sizes,

as it measures a proportion rather than an absolute count.

6. Proportion of Overriding Methods in a Subclass (POM)

POM is the proportion of methods in a subclass that override methods from a superclass. POM

ranges along the closed interval [0,1] and is proposed as an improvement to the Number of

Methods Overwritten (NMO) metric of Lorenz and Kidd [10]. Lorenz and Kidd argue that

subclasses should extend their superclasses, be specializations of the superclass, instead of

overriding the methods of the superclasses. POM is offered as an inverse measure of

specialization. A large POM may indicate a design problem.

Overriding methods in a subclass are those that have the same name as some methods in the

superclass. Let IMI be the total number of methods in the subclass, and let IOI be the number of

methods in the subclass that override methods in a superclass. Then

POM = IOI/IMI.

The partial properties of POM are described by adding or subtracting overriding methods to or

from the subclass. As overriding methods are added (subtracted), POM increases (decreases). If

we accept the proportion of overriding methods as an inverse measure of specialization then

POM is a valid measure on an ordinal scale. The metric POM is a quotient where the dividend is

the count of methods in a subclass that override methods from a superclass, and the divisor is the

count of all methods in the subclass. As counts, both the dividend and the divisor are absolute

scales, and proportions of absolute scales are ratio scales [12]. Thus DAC is a valid measure on
the ratio scale.

The advantage of POM over NMO is that POM allows us to compare programs of different sizes,

as it measures a proportion rather than an absolute count.

Object Oriented Meosures - 10

7. Unnecessary_ Coupling through Global Usage (UCGU)

UCGU is offered as an improvement to the Global Usage (GUS) metric of Lorenz and Kidd [10].

Whereas GUS counts the number of global variables, including system variables that are global

to the entire system, class variables that are global to the class, and pool directories which are

global to any classes that include them, UCGU counts the number of times global variables are

invoked. Assume Ci is the number of class global variables in class i, Gi is the number of system

variables invoked in class i, and Pi is the number of pool directories included in class i. Then

UCGU = ZiGi + EiCi + _--.iPi.

The partial properties that define the measure are the addition or deletion of global variables, in

their various guises, to the system. Since the instances of global variable usage are counted,

adding or removing system global variables or pool directories without invoking them will not

cause UCGU to change (though GUS would change). As class global variables are added

(subtracted), UCGU increases (decreases). As system global variable or pool directory usage is

added (subtracted), UCGU increases (decreases). ff we accept UCGU as a measure of poor

design and we also accept that the design deteriorates as global variables are added, then we can

accept UCGU as a valid measure on an ordinal scale.

In order to establish UCGU as a ratio scale, we need to show that the measure UCGU is additive

under the concatenation patterns of object-oriented classes. As an example, consider the

hierarchy chart of Figure 1 as a structure to which we wish to add Figure 6. Clearly, if Figure 6

is inserted into Figure 1, the global variables in the two programs represented by the hierarchy

charts are not affected. The instances of global variable usage are not affected by the merger of

the two programs. UCGU of the merged program is equal to the addition of UCGU of the initial

program and UCGU of the added program. Therefore UCGU can be accepted as a valid measure
on the ratio scale.

8. Degree of Coupling between Classes (DCBO)

DCBO is offered as an improvement to the Coupling between Object Classes (CBO) metric of

Chidamber and Kemerer [3]. According to Chidamber and Kemerer, excessive coupling among

object classes can hinder reuse through the deterioration of modular design, and the greater the

degree of coupling the more sensitivity to changes in other parts of the program. Whereas CBO is

a count of other classes with which a specific class shares methods or instance variables, DCBO

for a class is the count of methods utilized from other classes. DCBO ranges from 0 to N, where

N is a positive integer. DCBO represents the outside-the-class methods utilization for the class

being measured, ff a class is entirely self-contained, the DCBO for that class is zero.

In order to describe the partial properties of DCBO we apply the following atomic modifications:

a) addition (deletion) of a method to the measured class which calls a method which resides

in a different class,

b) addition (deletion) of a method to another class and the addition (deletion) of a call to the

method from the measured class,

Object Oriented Measures - 11

c) movement of a method from the class where it resides to the measured class which uses

the method.

Consider Figure 1 and atomic modification a. If a new call to a method which resides in class E

is added to class D, it is clear that DCBO of class D increases. The user would generally agree

that inter-object complexity increases (decreases) as inter-object coupling is added to (deleted

from) an existing hierarchy chart. DCBO would seem to meet that criterion.

If atomic modification b is applied to Figure 1 by adding a new method to class E and calling the

new method from class D, it is clear that DCBO of class D increases. The user would generally

agree that inter-object complexity increases (decreases) as coupling is added to (deleted from) an

existing hierarchy chart. Again, DCBO would seem to meet that criterion.

If a method which resides in class E is moved to class D, i.e., the application of atomic

modification c, and it is assumed that both classes need access to the method, it is clear that the

DCBO of class E increases while the DCBO of class D decreases. The user would generally

agree that while the over-all complexity has neither increased nor decreased the complexity of

both D and E has changed.

Thus DCBO appears to be a valid measure on the ordinal scale. In order to establish DCBO as a

ratio scale, we need to show that DCBO is additive under the concatenation patterns of object-

oriented classes. Since DCBO is a measure of one aspect of a class's complexity, the

concatenation pattern of interest is the merger of two classes. DCBO of class D+E is equal to

DCBOt)+DCBOE-At_E-AED, where AbE is the number of methods in D called by E, and AED is the

number of methods in E called by D.

Because we are measuring the interaction between two classes, the merging of these classes

changes the fundamental relationship of the methods within each to the methods in the other, i.e.,

what was interclass communication before the merge becomes intraclass communication after the

merge. Total communication has remained the same but the fundamental relationships have

changed. Let us define a conservation of communication: The merging of two classes does not

change the amount of communication taking place, i.e., the number of methods calling other

methods. However, the perspective of the communication in relation to object boundaries

changes from interclass communication to intraclass communication whenever the merged

classes utilize the methods of each other. The exact opposite effect takes place when a class is

split into multiple classes.

Let us further define DCWO as the Degree of Coupling within a Class, i.e., the number of

methods utilized within the class. Then, total communication for some predefined system is

equal to DCBO + DCWO = _c, where _: is a constant for the system in question. Thus, if two

classes are merged (or a class is split into two), _: = DCBOola + DCWOold = DCBOaew +

DCWO,ew. DCBO/_: satisfies the requirements of the ratio scale.

9. Number of Private Instance Methods (PRIM)

PrIM is offered as a measure of information hiding by a class. The PrIM for a class is the count

of the number of methods within the measured class which are declared to be private. These are

the methods that cannot be called by other classes. Because the private methods are hidden to

Object Oriented Measures - 12

other classes, this count is said to represent the amount of information hidden from the calling

classes. PrIM ranges from 0 to N, where N is a positive integer.

In order to describe the partial properties of PrIM consider the addition (deletion) of a method to

the measured class, which is declared as private and therefore cannot be called by another class.

The PrIM of the measured class increases (decreases). It seems reasonable that the amount of

information a class hides from other classes increases (decreases) as private methods are added to

(deleted from) the class. A measure can be used as an ordinal scale if the measurer accepts the

partial properties of the atomic modifications defined for that measure and the axioms of the

weak order hold. The axioms of the weak order hold and the acceptance of PrIM as an ordinal
scale seems clear.

In order to establish PrIM as a ratio scale, we need to show that PrIM is additive under the

concatenation patterns of object-oriented classes. Since PrIM is a measure of the information

hidden by a class, the required concatenation pattern would be to merge two classes and

recalculate PrIM. Private methods are those methods that cannot be called by other classes.

Consider Figure 1. The PrIM of class B+E is equal to PriMs + PRIME - 2, where _ is the number

of private methods that B and C hold in common, i.e., 8 is the intersection of the methods of

classes B and C. This is the equivalent to the union of two sets. Thus PrIM can be used as a
ratio scale.

10. Strings of Message Links (SML)

SML is proposed as a measure of error-detection complexity. It is offered as an improvement to

the Strings of Message-sends (SMS) metric of Lorenz and Kidd [10]. Whereas SMS is defined as

the number of linked messages, SML is defined as the count of intermediate results that linked

messages generate to feed to each succeeding message. The message linking form of coding

makes intelligent error recovery more difficult. SML ranges from 0 to N, where N is a positive

integer.

As an example, consider the Smalltalk command "myAccount balance print", which causes four

messages to be strung together with no chance of detecting invalid intermediate results. SML is

calculated by counting the potential nil and false conditions that are not accounted for in the

code. SML for this example is three.

The expanded code is explained in the following diagram:

self account balance printToTranscript

First, the message account is passed to self. This message states that the portion of

self that represents an account is to be used. anAccount is returned from this

operation, or nil if the account is nonexistent. A nil value results in a run-time

error.

anAccount balance (or nil)

Second, the message balance is sent to anAccount (the result of the

previous message). The result of this operation is aFloat, or the account

balance may be nil. A nil value again results in a run-time error.

Object Oriented Measures - 13

aFloat printToTranscript (or nil)

Third, the message printToTranscript is sent to the object aFloat

(the result of the previous message). This results in the balance

portion of the account being formatted as a string, or false if the

balance came back as another format, say as integer.

aString (or false)

Fourth, is the resulting string from the printToTranscript

operation.

The partial property description of this measure is the addition (deletion) of message-sends to

(from) the nested message structure. As statements are added to (deleted from) the nested

structure, the value of SML increases (decreases), which is in compliance with the measurer's

reasonable expectation. Thus, SML can be assigned to the ordinal scale.

Consider the merging or splitting of nested message-sends. If the above example of a Smalltalk

command were split into two message-send statements, SML for each string would be one, and

the total SML would be two. In general, merging two nested strings will result in an SML

measure equal to the sum of the SMLs of the two nested strings, plus one. Further, in the above

example, if we split the original command into four one message-send statements, the SML for

each string becomes zero, and thus the total SML becomes Zero. Because SML is a count,

possesses a natural zero, and has no transformations, SML appears to be a valid measure not only
on the ratio scale, but on an absolute scale.

Conclusion

Validity may depend on the use to which the measure is to be applied. If one is looking for "red

light" indicators that something may be wrong or that something may require extra attention to

assure that nothing does go wrong, then an ordinal scale may be all that is required. These "red

light" indicators help find abnormal conditions. Finding outliers seems to be the state-of-the-art

at this time. However, to truly understand software and the software development process, we

need to get a better grip on software measurement.

At a minimum, measures must be validated before they are placed in use. Not every metric that

has been proposed in the literature states the dimension that it proposes to measure. However,

validation of a metric requires the identification of this dimension. Thus, the very act of

validating the measures will help define the many dimensions of object-oriented software.

Obiect Oriented Measures- 14

References

[1]

[2]

[31

[41

[5]

[61

[7]

[81

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

L. Baker, J. M. Bieman, N. Fenton, D. A. Gustafson, A. Melton, and R. Whitty, "A

philosophy of software measurement", The Journal of Systems and Software, 12, 277-
281, 1990.

W. Boehm, Software Engineering Economics. Englewood Cliffs: Prentice-Hall, 1981.

R. Chidamber and C. F. Kemerer, "A metric suite for object oriented design", IEEE

Transactions on Software Engineering, 20(6), June 1994.

DeMarco, Controlling Software Projects. New York: Yourdon Press, 1982.

Fenton, Software Metrics: A Rigorous Approach. London: Chapman & Hall, 1991.

Fenton, "Software measurement: A necessary scientific basis", IEEE Transactions on

Software Engineering, 20(3), March 1994.

Henderson-Sellers, A Book of Object-Oriented Knowledge. New York: Prentice Hall,
1992.

N. Hong, M. V. Mannino, and B. Greenberg, "Measurement theoretic representation of

large, diverse model bases", Decision Support Systems, 10, 1993.

Li and S. Henry, "Object-oriented metrics that predict maintainability", Journal of

Systems and Software, 23, 111-122, 1993.

Lorenz and J. Kidd, Object-Oriented Software Metrics. Englewood Cliffs: Prentice Hall,
1994.

D. Neal, The measurement theory validation of proposed object-oriented software

metrics, unpublished dissertation, Virginia Commonwealth University, 1996.

S. Roberts, Measurement Theory with Applications toDecisionmaking, Utility, and the

Social Sciences. Reading, Massachusetts: Addison-Wesley, 1979.

Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented

Modeling and Design. Englewood Cliffs: Prentice Hall, 1991.

W. Savage and P. Ehrlich, "A brief introduction to measurement theory and to the

essays", in Philosophical and Foundational Issues in Measurement Theory. New Jersey:

Lawrence Erlbaum Associates, 1992.

J. Weyuker, "Evaluating software complexity measures", 1EEE Transactions on Software

Engineering, 14(9), September 1988.

Zuse, Me'_theoretische Analyse von statischen Softwarekomplexit_tsma_en (in

German), unpublished dissertation, Technical University Berlin, 1985.

Object Oriented Measures - ! 5

[17] Zuse, Software Complexity: Measures and Methods. Berlin: Walter de Gruyter, 1990.

[18] Zuse, "Foundations of object-oriented software measures", Proceedings of the Third

IEEE International Software Metrics Symposium, March 1995.

[19] Zuse and P. Bollmann, "Software metrics: Using measurement theory to describe the

properties and scales of static software complexity metrics", Sigplan Notices, 24(8),

August, 1989.

Object Oriented Meosures - 16

